Skip to content

Tag: traveling salesman problem

Simulated annealing applied to the traveling salesman problem

Simulated annealing is an optimization technique that finds an approximation of the global minimum of a function. When working on an optimization problem, a model and a cost function are designed specifically for this problem. By applying the simulated annealing technique to this cost function, an optimal solution can be found. In this article, I present the simulated annealing technique, I explain how it applies to the traveling salesman problem, and I perform experiments to understand how the different parameters control the details of the search for an optimal solution. I also provide an implementation in Python, along with graphic visualization of the solutions.